
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 60:295–322
Published online 13 August 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1888

A convective weakly viscoelastic rotating flow with pressure
Neumann condition

Julio R. Claeyssen1,∗,†, Elba Bravo Asenjo2 and Obidio Rubio3

1IM-Promec, Universidade Federal do Rio Grande do Sul, P.O. Box 10673, 90001-970 Porto Alegre, RS, Brazil
2UNASP-Adventist University Center of São Paulo, SP, Brazil

3Facultad de Ciencias, Universidad Nacional de Trujillo, La Libertad, Peru

SUMMARY

The objective of this work is to investigate through the numeric simulation, the effects of the weakly
viscoelastic flow within a rotating rectangular duct subject to a buoyancy force due to the heating of
one of the walls of the duct. A direct velocity–pressure algorithm in primitive variables with a Neumann
condition for the pressure is employed. The spatial discretization is made with finite central differences
on a staggered grid. The pressure field is directly updated without any iteration. Numerical simulations
were done for several Weissemberg numbers (We) and Grashof numbers (Gr). The numerical results
show that for high Weissemberg numbers (We>7.4×10−5) and for ducts with aspect ratio 2:1 and 8:1,
the secondary flow is restabilized with a stretched double vortex configuration. It is also observed that
when the Grashof number is increased (Gr>17×10−4), the buoyancy force neutralizes the effects of the
Coriolis force for ducts with aspect ratio 8:1. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This work seeks to study the internal weakly viscoelastic flow contained in a rotating rectangular
duct with buoyancy effects due to the heating of a wall of the duct. This is done with a direct
pressure–velocity algorithm in primitive variables [1] that considers a pressure Neumann condition.
This later condition is important for updating the pressure in one step without any iteration. Central
differences on a staggered grid are employed because they allow second-order approximations.
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The Navier–Stokes equations, together with the divergence free condition, constitute the basic
formulation for an incompressible flow. From a mathematical point of view, the system that governs
this kind of flow is singular with respect to the pressure. There is no evolution equation for such a
quantity. Following the work of Gresho and Sani [2], the pressure is obtained by solving a Poisson
equation with a Neumann boundary condition. A compatibility condition of the source with the
boundary conditions guarantees the existence of solutions.

The internal rotating flow problem has been considered by several authors: Chen et al. [3],
Speziale [4, 5], Robertson [6], Khayat [7], Jin and Chen [8], Nonino and Comini [9], Nonino
and Croce [10], Liqiu [11], Lee and Yan [12], among others. Speziale employed the divergence-
vorticity formulation with finite-difference schemes due to Arakawa for the convective terms
and the DuFort–Frankel scheme for the viscous-diffusion terms. Chen et al. employed Fourier–
Chebyshev pseudo-spectral methods for solving incompressible flows in 3D channels in rotation
with square traversal section. Robertson performed numerical studies for laminar incompressible
flows in curved ducts. He employed finite differences on a staggered grid with Newton method.
Khayat studied thermal convection with viscoelastic fluids that satisfy the constitutive equations
of Oldroy-B. By using the stream function–vorticity formulation, Jin and Chen [8] considered a
numerical study for the transient behavior of the natural convection in a vertical rectangular region.
Nonino and Comini [9] and Nonino and Croce [10] treated the problem of the natural convection
by using the finite element method. Liqiu [11] considered a stationary study of the transition of
the buoyancy forces due to the rotation of a curved duct with a square transverse section, rotating
around a perpendicular axis to the extension of the duct. Lee and Yan [12] investigated mixed
convection heat and mass transfer in the entrance region of radial rotating rectangular ducts with
water film evaporation along the porous duct walls by using a vorticity–velocity numerical method.
Emphasis was placed on the rotation effects, including both Coriolis and centrifugal buoyancy
forces and the mass diffusion effect on the flow structure and heat transfer characteristics.

The understanding of the pressure-driven flow of a viscoelastic fluid flow is of importance in
many industrial processes such as fiber spinning, injection molding, extrusion and in the design of
various types of rotating machinery. The addition of a minute amount of a long chain polymer (e.g.
50–100 parts/million by weight) to a Newtonian liquid produces a highly dilute viscoelastic liquid
which can be considerably more stable in the presence of rotations [5]. In turbulent pipe flows
it results in a substantial decrease in the pressure drop. The prediction of this behavior requires
adoption of appropriate constitutive equations and rheological parameters. Since the parameters
in the constitutive equation determine the viscoelastic characteristics of flow, i.e. secondary flow
patterns and volumetric flow rates, numerical prediction or measurements of velocity at certain
locations can be used to estimate these parameters [13, 14].

This work will be focused on the structure of the secondary flow and its effects on the flow in
the axial direction of the duct. It is assumed that the duct is long enough to suppress effects at the
end so that the secondary flow is independent of the coordinate along the axial direction. We shall
consider two problems. The first one refers to the case of a weakly viscoelastic rotating flow that
is studied for several Weissemberg numbers [4, 5] in ducts with aspect ratio 2:1 and 8:1. The other
one is a mixed convection problem with a weakly viscoelastic rotating flow for several Grashof
numbers in ducts of aspect ratio 8:1.

With the Neumann pressure condition, the results obtained by Speziale [5] for a rotating flow
have been reproduced. Specific calculations shows that the addition of small amounts of a long
chain polymer to Newtonian liquid can have a stabilizing effect on rotating channel flow and give
rise to secondary flows with a substantially reduced frictional drag. This is a non-linear effect
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which, although observed experimentally in analogous flow configurations, to our knowledge has
not been calculated in rotating channel flow. The computational experiences with temperature
effects allows observation of how the heat supplied by some mechanism generates flow instability
with respect to earlier configurations.

2. THE GOVERNING EQUATIONS

In this section, we present in compact form the equations for an incompressible fluid subject to a
forcing term that will characterize the problems to be discussed in this work.

With the objective to write the equations in non-dimensional form we introduce the following
scales: D the length scale, W0 the velocity scale, �T =Th−T0 the temperature difference and the
P0 pressure scale. We then consider the following non-dimensional variables:

x1→Dx , x2→Dy, x3→Dz, t∗ → D

W0
t, v1→W0u

v2→W0v, v3→W0w, T → T −T0
�t

, p∗ → P0P

The non-dimensional numbers Re=W0D/�,Pe=W0D/� are the Reynolds number and the Peclet
number, respectively. Here � denotes the kinematic viscosity and � is the thermal diffusion coef-
ficient. Then the non-dimensional equations that govern the flow of an incompressible fluid are
given by the momentum equation

�u
�t

+u·∇u+∇P= 1

Re
∇2u+F(u,�) in �, t>0 (1)

the continuity equation

∇ ·u=0 in �, t>0 (2)

and the energy equation

��

�t
+u·∇�= 1

Pe
∇2� in �, t>0 (3)

In these equations, � is a spatial region limited by the contour �, u=u(t,x)=(u(t,
x),v(t,x),w(t,x)), P= P(t,x) and �=�(t,x) are, respectively, the velocity, the pressure, the
temperature of the fluid and F is a forcing term given below for the two Maxwell viscoelastic
models that are considered in this work and to be discussed in more detail in Sections 6 and 7.

• Model I: Rotating weakly viscoelastic flow

F(u)=(2/Ro)j×u−2We(∇2w∇w+ 1
2∇(∇w)2) (4)

where Ro=W0/�D is the Rossby number and We=��/D2 is the Weissemberg number,
satisfying We�1.

• Model II: Rotating mixed convective weakly viscoelastic flow

F(u,�)=(2/Ro)j×u−2We(∇2w∇w+ 1
2∇(∇w)2)+ Gr

Re2
�j (5)
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where Gr=g��T D3/�2 is the Grashof number, g is the gravity acceleration and � is the
coefficient of thermal expansion.

Here, the rotating vector, x=� j is in the direction of the y-axis, where � is the angular velocity.
The problem under consideration deals with a weakly viscoelastic incompressible fluid flow

contained in a rectangular duct, driven by the pressure and subject to a permanent rotation in
the direction perpendicular to the duct as considered in [4, 15]. The physical configuration and
coordinate system are shown in Figure 1.

Equations (1)–(2) are subject to the following initial and boundary conditions

u(0,x)=u0(x), x in �=�∪� (6)

u=u�(x, t) on �=�� (7)

where u0 satisfies the continuity equation

∇.u0=0 in � (8)

and u0, u� being subject to the restriction

u0 ·n=u�(0,x) ·n on � (9)

From the continuity equation and the divergence theorem, it follows the condition of global
mass ∫

�
u·n dx=0 (10)

where n is the unit exterior normal to the boundary � of the region �.
In agreement with Ladyzhenskaya [16], the specification of the pressure at the non-slip wall of �

is not allowed. Otherwise, the system (1)–(10) would be over determined. It is clear from Equations
(1)–(2), that there is no explicit equation for the pressure. The velocity field, in principle, calculated
from the momentum equation must be restricted so that it satisfies the solenoidal kinematic

Figure 1. Flow in a rotating rectangular duct.
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condition ∇ ·u=0. This means that the pressure has two contributions; influences it serves as a
force for conservation in the mechanical balance law but, also, as a continuity restriction [17].

For the energy Equation (3), the initial conditions are given

�(x,0)=�0(x), x in � (11)

and the mixed boundary conditions

�=��1(x, t) on �1⊂� (12)

��

�n
=��2(x, t) on �2⊂� (13)

where �=�1∪�2 is the boundary of the region �. Here �1 refers to the vertical walls of the duct
and �2 refers to the horizontal ones.

2.1. The Poisson equation for the pressure

By applying the divergence operator in Equation (2), together with the momentum Equation (1),
leads to the pressure equation

∇2P=∇ ·
(

1

Re
∇2u−u·∇u+F(u,�)

)
in � for t�0 (14)

Thus, the pressure is determined by solving a Poisson equation subject to appropriate boundary
conditions. For the problem to be well-posed, the boundary conditions must be given in such a way
that the continuity equation is satisfied near the boundary. To keep the divergence-free condition
for the velocity is an important requirement for the simulation of an incompressible flow.

The above equation is actually employed as a substitute for the continuity equation. The elliptic
nature of this equation forces the need of prescribing a boundary condition for the pressure. In
a fundamental work by Gresho and Sani [2], it is concluded that a Neumann condition for the
pressure turns out to be the most appropriate. This condition is obtained by taking the normal
component of the pressure gradient isolated from the momentum equation, that is

�P
�n

=n ·∇P=n ·
(

1

Re
∇2u− �u

�t
−u·∇u+F(u,�)

)
on � for t�0 (15)

In order that a Poisson equation (14) with a Neumann condition (15) can be solved, it is
necessary that the following compatibility condition be satisfied

∫ ∫
�

∇2P d�=
∫

�
Pn d� (16)

where Pn =n ·∇P .
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3. DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS

When the duct is assumed to be sufficiently long, there is an internal section where the effects at
the extremes can be neglected, that is, the flow is fully developed. The axial pressure gradient

�P
�z

=−G

is considered constant, maintained by external means (P is the modified pressure, which includes
the gravitational and centrifugal force potentials). In this situation, it is observed that in the internal
region, the physical properties of the flow become independent of the coordinate z; however, the
fully developed velocity field is three-dimensional. For non-zero rotation rates, the components
u, v of the velocity v=(u,v,w) are termed the secondary flow and the component w is referred
to as the main flow.

With the above considerations, Equations (1) and (3) will be discretized with central finite
differences on a staggered grid xi = i�x, y j = j�y; i=1, . . . ,N , j =1, . . . ,M on the transverse
section of the duct [18]. The spatial approximations for the pressure P , temperature � and the main
velocity w are taken at the center of each cell. The first-order derivatives can be approximated
by forward or central differences. The notation D1r ,D2r ,r = x, y, is employed for the first-order
forward difference operator and for the second-order difference operator, respectively. For second-
order derivatives, Dxx ,Dyy correspond to the respective second-order central difference operators.
The pressure gradient will be approximated with a first-order forward difference operator, whereas
the terms with velocity will be approximated by a second-order central difference operator. Thus, if
∇[n] and ∇2[2] denote the discrete gradient and Laplacian, respectively, we have from the momentum
equation (1) semi-discrete approximation

�ui, j
�t

=−∇[1]Pi, j −ui, j .∇[2]ui, j + 1

Re
∇2[2]ui, j +F[ui, j ,�i, j ] (17)

For the energy equation (3), we have the following semi-discrete approximation

��i, j
�t

=−ui, j ·∇[2]�i, j + 1

Pe
∇2[2]�i, j (18)

At the boundary, the gradients and Laplacians for the velocity and energy fields are approximated
with second-order precision. This allows to have a second-order scheme through the closed domain
�. Also, to improve the numerical stability when computing the pressure from the Poisson equation.

3.1. Time discretization

There are many available methods for time discretization. In order to reduce the computational
cost, the explicit first-order Euler method will be employed. Thus, from Equation (17) we have
the time approximation scheme

uk+1
i, j −uki, j

�t
=−∇[1]Pk

i, j +Uk
i, j (19)

where

Ui, j =−ui, j ·∇[2]ui, j + 1

Re
∇2[2]ui, j +F[ui, j ,�i, j ] (20)
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In an analogous way, from Equation (18), we have the time approximation scheme for the
energy equation

�k+1
i, j −�k

i, j

�t
= −ui, j ·∇[2]�ki, j +

1

Re
∇2[2]�

k
i, j

i=1 :N , j =1 :M, k=0,1, . . . (21)

4. DISCRETIZATION OF THE POISSON EQUATION FOR THE PRESSURE

The discretization of the Poisson equation for the pressure of incompressible flows requires special
attention. It is required that the solution of Equation (19) satisfies the continuity equation in the
interior of the spatial region �.

Since the pressure field to be calculated is time-dependent, the discretization of the equation
for the pressure (14) is performed for an arbitrary but fixed time. This is done in conjunction with
the Neumann condition (15) at the boundary �.

The pressure field is determined up to an additive constant corresponding to the level of the hydro-
static pressure. This can be removed by prescribing the integral relationship c=∫∫

� P(x, y)dx dy,
or by a grounding condition at certain point P(x0, y0)=0. This later condition will be considered.
Thus, for a given discrete solution Pi, j , although (Pi, j +c) is also a solution for any constant c,
the grounding condition allow us to determine the pressure by choosing c=0.

By taking divergence in Equation (19), and to keep valid the continuity equation at level time
(k+1), it follows that

∇2Pk = ∇ ·uk
�t

+∇ · f (uk) (22)

where f contains all viscous and convective terms as well as the rotating term F. By applying
a second-order central difference approximation on a staggered grid, the Poisson equation (22)
becomes

∇2[2]Pi, j =∇[1] ·Ui, j +Dt (23)

where Ui, j is as given in (20). Here the term Dt =∇.uk/�t corresponds to dilatation and it is
maintained with the purpose of eliminating non-linear instabilities [19–21].

On the other hand, the continuity Equation (2) discretized at the level time (k+1) must be
satisfied exactly, that is

0=D1xu
k+1
i−1, j +D1yv

k+1
i, j−1 (24)

Dividing Equation (24) by �t , we have the dilatation term

0= D1xu
k+1
i−1, j +D1yv

k+1
i, j−1

�t
=Dk+1

t (25)

Substituting the approximated momentum Equation (19) in Equation (25), it follows that at each
level time k,

D1x D1x Pi−1, j +D1y D1y Pi, j−1=Dt +D1xUi−1, j +D1yVi, j−1 (26)
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Since the involved operators satisfy D1x D1x Pi−1, j =Dxx Pi, j ,D1y D1y Pi, j−1=Dyy Pi, j it follows
from Equation (26) that

∇2[2]Pi, j =D1xUi−1, j +D1yVi, j−1+Dt , i=1 :N , j =1 :M (27)

This is the discretized Poisson equation at level time k.
In order to have good convergence of the approximate solution of (23), the compatibility

condition (16) should be satisfied exactly in the discrete form, that is [22, 23],
∑

i, j∈�
∇2Pi, j = ∑

i, j∈�

�Pi, j
�n

In fact, by considering �x=�y=h in Equation (27), we have

N ,M∑
i, j=1

(Pi, j−1+Pi−1, j −4Pi, j +Pi+1, j +Pi, j+1)

=h2
N ,M∑
i, j=1

Dt +h
N ,M∑
i, j=1

(Ui, j −Ui−1, j +Vi, j −Vi, j−1) (28)

It turns out that

N∑
i=1

(Pi,0−Pi,1+Pi,M+1−Pi,M )+
M∑
j=1

(P0, j −P1, j +PN+1, j −PN , j )

=h
N∑
i=1

(Vi,M −Vi,0)+
M∑
j=1

(UN , j −U0, j ) (29)

From the above equation, the discrete Neumann conditions should satisfy the four following
relationships:

P0, j = P1, j −hU0, j , j =1, . . . ,M (30)

PN+1, j = PN , j +hUN , j , j =1, . . . ,M (31)

Pi,0= Pi,1−hVi,0, i=1, . . . ,N (32)

Pi,M+1= Pi,M −hVi,M , i=1, . . . ,N (33)

Let us observe that these conditions are a discrete version of Equation (15).

5. A PRESSURE–VELOCITY ALGORITHM

We shall follow an algorithm introduced by Claeyssen et al. [1]. At each time level, the pressure is
updated in one step and then the velocity field is calculated. The pressure is initialized by solving
a singular system that appears from the discretization of the Poisson equation with a Neumann
condition. When solving the Poisson equation, a special treatment is given to the interior points
that correspond to the interior cells and to the adjacent cells, in such a way that the compatibility
condition is verified. This actualization contains correction terms for a direct computing of the
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pressure at the interior points of the interior cells. This is done by incorporating the values of the
pressure already calculated in neighboring points. This procedure is described as follows.

Let u=ui, j and P= Pi, j . The pressure is initialized by solving the equation

∇2[2]P=Dt +∇[1].
(

−uk .∇[2]uk + 1

Re
∇2[2]uk

)
(34)

with a SOR method for k=0 [1].
For a direct update of the variables, Equation (17) is used.
Let us assume that all discrete variables are known at the time k. We consider v∗ as the velocity

that would appear as the solution of Equation (17) with an absent pressure gradient by knowing
the field uk , that is

v∗−uk

�t1
=−uk ·∇[2]uk+ 1

Re
∇2[2]uk+F[uk,�k] (35)

Thus

v∗ =uk+�t1

(
−uk ·∇[2]uk+ 1

Re
∇2[2]uk+F[uk,�k]

)
(36)

The variable v∗ is known as pseudo-velocity [9], and does not necessarily satisfy the continuity
equation. The Helmholtz theorem [24, 25] allows v∗ to be expressed as

v∗ =r∇Pk+1+A such that ∇ ·A=0 (37)

Now, defining the velocity at time (k+1) as uk+1= A, and the step of time as �t=r , it follows,
by using (36), the discrete version of (17), with �t1=�t ,

uk+1−uk

�t
=−∇[1]Pk+1−uk .∇[2]uk+ 1

Re
∇2[2]uk+F[uk,�k] (38)

Thus, uk+1 is a discrete solution of Equation (17) and satisfies the continuity equation.
Now, by taking divergence in (38), we arrive at the following discrete equation for the pressure

at the level time (k+1),

∇2[2]Pk+1 = ∇.vk

�t
+∇[1] ·

(
−uk ·∇[2]uk+ 1

Re
∇2[2]uk+F[uk,�k]

)

= ∇ ·Uk+Dk
t (39)

The fictitious values that appear in the discretization of the Neumann condition (30)–(33), are
calculated through the following equations:

Pk+1
0, j = Pk

1, j −hUk
0, j , j =1, . . . ,M (40)

Pk+1
N−1, j = Pk

N , j +hUk
N , j , j =1, . . . ,M (41)

Pk+1
i,0 = Pk

i,1−hV k
i,0, i=1, . . . ,N (42)

Pk+1
i,M+1= Pk

i,M −hV k
i,M , i=1, . . . ,N (43)
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For the interior points, the pressure field is up-dated by solving Equation (39) with the incor-
poration of values already determined, that is, we consider the one-step scheme for computing the
pressure field

Pk+1
i, j = 1

4 (P
k+1
i, j−1+Pk+1

i−1, j +Pk
i+1, j +Pk

i, j+1+h2∇[1]Uk+h2Dk
t ) (44)

where �x=�y=h.

5.1. The pressure–velocity algorithm

With the above discussion, an algorithm for integrating the Navier–Stokes equations for a rotating
flow with a prescribed Neumann condition for the pressure can be formulated as follows.

1. Introduction of the initial velocity, corresponding to the initial time level k=0, the boundary
conditions and involved physical parameters.

2. Initialization of the pressure through Equation (34).
3. Calculation of the pseudo-velocity field v∗ by using (36).
4. One step updating of the pressure field by using (40)–(44).
5. Update the temperature field �k+1 through (21).
6. Update of the velocity field uk+1 through (38).
7. To do steps (3)–(6) for k=1,2, . . . .

8. End the calculations.

6. ROTATING WEAKLY VISCOELASTIC FLOW

The model considered in this work appears in turbomachinery where we can suppose that a
substance through spinning can be dissolved to form a solution. It is assumed that a small amount
of polymer added to a Newtonian liquid can create a highly diluted viscoelastic fluid, which
can be considerably more stable in the presence of rotations. The prediction of the behavior
requires adoption of appropriate constitutive equations and rheological parameters. Constitutive
equations can be formulated for viscoelastic fluids in terms of the mechanical Maxwell models.
The rheological behavior of a viscoelastic fluid can be simulated by a Hookean spring in series
with a Newtonian viscous dashpot [26]. We shall refer to Joseph [27] for the derivation of the
following constitutive equation:

�=−p1+	 (45)

�
D	

Dt
+	=2
D[u] (46)

Here �(t,x) is a symmetric tensor field, v(t, x) is a solenoidal field, 	 is the so-called extra tensor
and p is the reaction pressure. The type of invariant derivative that is chosen for D/Dt determines
the form of constitutive equation. Thus, there are a great variety of possibilities for this (see [27,
p. 80]). In this work we shall use the covariant convected derivative or subconvective derivative
D	/Dt=so with

	o= d	

dt
+	L+LT	 (47)
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where L is the velocity gradient. In terms of components

	okl =
�	kl
�t

+v ·∇	kl +	km
�vm

�xl
+	lm

�vm

�xk
(48)

For a fully developed flow with the above viscoelastic fluid and for which the physical variables
are axially independent, the tensor components of a Maxwell viscoelastic flow are simplified.

We assume that the relaxation time � of the weakly viscoelastic fluid is small and that the
secondary flow is relatively weak, that is

��

D2
�1,

U

W
�1,

V

W
�1 (∗)

where U,V,W are maximum values for the components of the velocity field and D is the length
scale.

The fact of having a highly diluted fluid, suggests that the specific mass � and the kinematic
viscosity �=
/� will be the same ones as the Newtonian fluid, from which they are obtained.
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Figure 2. Streamlines of the secondary flow in a duct with aspect ratio 8:1; for t :
(a) 10 s; (b) 500 s; (c) 1000 s; (d) 1600 s; and (e) fully developed, for Re=248, C=0.057

(G=2×10−4 lb/ft3), Ro=21.3 (�=0.005rad/s),We=4.2969×10−5.
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Figure 3. Streamlines of the secondary flow in a duct with aspect ratio 8:1; for t :
(a) 10 s; (b) 500 s; (c) 1000 s; (d) 1600 s; and (e) fully developed, for Re=248,
C=0.057 (G=2×10−4 lb/ft3), Ro=21.3 (�=0.005rad/s), We=1.289×10−4.

The hypothesis (*), implies after an order approximation analysis, that the components of the
dissipative stress tensor can be approximate for the following equations:

	zz =0

and

	xx +2�	xz
�w

�x
=2


�u
�x

	xy+�

(
	xz

�w

�y
+	yz

�w

�x

)
=


(
�u
�y

+ �v

�x

)

	xz+�	zz
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�w

�x
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Denoting by �=
/� the kinematic viscosity, (∇w)2=(�w/�x)2+(�w/�y)2 the value of the
longitudinal velocity gradient, using the continuity equation and by substituting in the balance
momentum equation

�

[
�v
�t

+v ·∇v+2x×v
]
=−∇ p+∇ ·	

we have
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Figure 4. Axial velocity profiles in a duct 8:1; Re=248, C=0.057, Ro=21.3: (a) horizontal and
(b) vertical, dashed lines for �=0 and continuous lines for �=0.3,We=1.289×10−4,Q f /Q=0.9654.
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Figure 5. Streamlines of the secondary flow in a duct with aspect ratio 8:1; for t : (a) 10 s;
(b) 500 s; (c) 1600 s; and (d) fully developed, for Re=248, C=0.057 (G=2×10−4 lb/ft3),

Ro=21.3 (�=0.005rad/s), We=2.1484×10−4.

On the basis of the above assumptions and in dimensionless form, we obtain the following
model:

�u
�t

+u·∇u+∇P= 1

Re
∇2u+F(u) in �, t>0 (49)

∇ ·u=0 in � t>0 (50)

u = (u(t, x, y),v(t, x, y),w(t, x, y))

F(u) = (2/Ro)j×u−2We(∇2w∇w+ 1
2∇(∇w)2)

(51)
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Figure 6. Axial velocity profiles in a duct 8:1; Re=248, C=0.057, Ro=21.3: (a) horizontal and (b)
vertical, with dashed lines for �=0 and continuous lines for �=0.5, We=2.1484×10−4, Q f /Q=0.9735.

that will be employed for determining the secondary flow in a transversal section (0,D)×(0,H)

perpendicular to the axis of the duct as in Figure 1. The aspect ratio is given for �=H/D.

6.1. Numerical simulations

Here, we consider the results of the numerical simulations for a rotating weakly viscoelastic fluid
in a duct by using the direct velocity–pressure algorithm given before with a Neumann condition
for the pressure. The objective is to examine the effects of rotation on the secondary flow in ducts
with aspect ratio 8:1 and 2:1. In the first case, a uniform grid of 16×128 points was considered,
where �x=�y=0.01ft. For the duct of ratio 2:1, a grid of 32×64 points was used, where
�x=�y=0.005ft. The results were accomplished by choosing a time step �t=0.001 in order to
arrive quickly at the fully developed flow. This time step value satisfies the classical linear stability
condition [5, 19]. Through numerical experiments, on a series of refined grids, we obtained that
the solution converged to a grid-independent solution. Two basic facts contributed for this. The
spatial scheme, including the discretization at the boundary, turned out to be of second-order. The
one step update, besides the discrete compatibility of the pressure Neumann condition, introduces
a filtering that is useful for obtaining a desired numerical convergence.

We consider the initial velocity field conditions u(0)=v(0)=0 and w(0)=w1, where w1 is
determined by solving the Poisson equation

−�w1=ReC (52)
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Figure 7. Secondary flow in a duct 2:1; t : (a) 1 s; (b) 12.5 s; (c) 40 s; (d) 75 s;
(e) 400 s; and (f) fully developed, for Re=279, C=0.1345 (G=6×10−4 lb/ft3),

Ro=1.198 (�=0,1rad/s), We=1.289×10−4.

subject to a non-slip boundary condition w=0 on �. Thus, w1 corresponds to a classical quasi-
parabolic profile. At the walls of the duct, were prescribed the conditions u=0,v=0,w=0.

Speziale [5] mentions a qualitative comparison of this type of secondary flow with a Newtonian
structure when the Weissenberg number is included. However, he does not exhibit greater results
about the structure of this flow for weakly viscoelastic fluids. It is left as a proposal for future
studies. In this work we shall exhibit the flow mentioned by Speziale.

In the case of aspect ratio 8:1, simulations were carried out for three physical situations
obtained by a variation of the Weissenberg number, while keeping fixed the other bulk properties
of the fluid such as specific mass �=1.936slugs/ft3 and viscosity �=1.1×10−5 ft2/s, corre-
sponding to water at an environment mean temperature. The longitudinal pressure gradient is kept
constant at G=2×10−4 lb/ft3. For a weak rotation, it is considered the angular velocity �=
0.005rad/s. These later parameters correspond to the flow of a Newtonian fluid [4, 28]. They will
be compared with the structure of a weak rotating viscoelastic fluid by controlling the Weissenberg
number.

In the first situation, we chose We=4.2969×10−5, that corresponds to the relaxation time of
�=0.1(s). The secondary flow is shown for different times in Figure 2. It can be observed that
the secondary flow develops slower than in the case of a Newtonian flow [4, 28], until it reaches
a fully developed state in approximately t=4000s.
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Figure 8. Streamlines of the secondary flow in a duct with aspect ratio 2:1, for t :
(a) 1 s; (b) 12.5 s; (c) 40 s; (d) 75 s; (e) 400 s; and (f) fully developed, for Re=279,

C=0.1345 (G=6×10−4 lb/ft3), Ro=1.198 (�=0.1rad/s), We=1.289×10−4.

In Figure 3 is shown the streamlines of the velocity field for We=1.289×10−4 (�=0.3). It
is observed that the secondary flow tends to stabilize with only two vortexes, in the center of
the transversal section. The vortexes begin to appear in approximately t=1600s, reaching the
stationary state in approximately t=3000s. This structure differs from the previous case, where
six vortexes are developed.

The longitudinal velocity profiles, fully developed, in the central lines of the transversal section
of the duct, for We=1.289×10−4, are shown in Figure 4. The horizontal profile is for y/D=4
and vertical one for x/D=0.5. It can be observed that the appearance of two vortexes in the center
of the duct, generates a deviation of the horizontal profile in the direction of the side x/D=1.
However, the flowrate is reduced with a change rate of approximately 3.5% in relation to the
flowrate of the longitudinal flow. The profiles, forWe=4.2969×10−5, have a very similar behavior
to the Newtonian case [4, 28] and they are not shown here.

With a further increase of the viscoelastic coefficient, say We=2.1484×10−4 (�=0.5), we
are able to stabilize the secondary flow with a structure of two vortexes at the ends, as can be
observed in Figure 5. The fully developed state is reached in approximately t=600s, a much
smaller time in relation to the other preceding cases. This state is commented on by Speziale [5],
without presenting results, saying that for a larger Weissenberg number, satisfying We>7.4×10−5,
the flow structure stabilizes with two vortexes.

The longitudinal velocity profiles, at the central lines of the transversal section of the duct,
are exhibited in Figure 6 for We=2.1484×10−4 with a flowrate of approximately 2.7% in the
longitudinal direction. It is observed that when the Weissenberg number increases, the secondary
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Figure 9. Axial velocity profiles in a duct 2:1, Re=279, Ro=1.198, We=1.289×10−4: (a) horizontal and
(b) vertical [dashed line (�=0), continuous line (�=0.1rad/s)]. Q f /Q=0.5125, umax/wmax=0.128.

flows of a dilute, weakly viscoelastic fluid generate a reduction in the loss of the flowrate in the
longitudinal direction, as shown in Figures 4 and 6, in comparison to the reduction of 7%, that
happens in the case of a Newtonian fluid [4, 28].

In Figures 7 and 8, are shown the velocity fields and streamlines of the secondary flow, in
a duct with a aspect ratio 2:1, for We=1.289×10−4, with angular velocity �=0.1rad/s, and a
longitudinal velocity gradient G=6×10−4 lb/ft3. It is observed that for weakly viscoelastic fluids,
besides the two main vortexes, there appear two secondary vortexes in the medium section of the
duct (Figure 8(d)). The secondary vortexes are dissipated and after a certain period of instability,
the flow is able to stabilize in two counter-rotating vortexes.

The longitudinal velocity profiles can be seen in Figure 9, where the flowrate, due to the effects
of this secondary flow, is of 48.6% relative to the flowrate without rotation.

7. MIXED CONVECTION WITH A ROTATION WEAKLY VISCOELASTIC FLOW

The stability of a convective fluid movement, where it exists with a difference of temperature
in the vertical side walls, with high aspect ratio, is studied numerically. For the problem of a
weakly viscoelastic fluid the flow considered is one of mixed convection, in the interior of the
duct in rotation. This later phenomena appears in engineering applications such as in cooling
systems for conductors of electric generators, separation processes, rotating heat exchangers and
turbomachinery.

The problem is generated by the heating of one of the walls of the rectangular section with
constant temperature, Th (internal wall), while the opposite wall remains cold with temperature
Tc (Tc<Th), and the horizontal walls are kept adiabatic, as shown in Figure 1.

A convective flow is generated by the buoyancy forces as soon as the left vertical wall temperature
is increased to a constant value, while the right vertical wall is kept at a lower temperature. Here
we assume that the flow is laminar and the fluid inside of the duct is weakly viscoelastic. It is
also considered that the Boussinesq approximation is valid, which imply that the fluid properties,
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Figure 10. Secondary flow in a duct 8:1; for t : (a) 10 s; (b) 100 s; (c) 500 s; (d) 1600 s; and
(e) fully developed, for Re=260, C=0.057 (G=2×10−4 lb/ft3), Ro=21.3 (�=0.005rad/s),

We=2.1484×10−4, Gr=54331, Pr=8.

the coefficient of volumetric expansion � and the viscosity coefficient �, are constants and that the
buoyancy term appears only in the momentum equation as a linear function of the temperature.
No sources of heat will be considered in the interior.

Based on the above assumptions, the non-dimensional momentum equation that govern the flow
of this problem can be expressed on the following form:

�u
�t

+u
�u
�x

+v
�u
�y

= −�P
�x

+ 1

Re
∇2u

−2We

(
�w

�x
∇2w+ 1

2

�
�x

(∇w)2
)

−2
1

Ro
w (53)

�v

�t
+u
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+v
�v
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= −�P

�y
+ 1

Re
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(
�w
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2

�
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whereGr=g��T D3/�2 is the Grashof number, C=GD/�W 2
0 and Pe=W0D/� the Peclet number.

We thus consider the following model

�u
�t

+u·∇u+∇P= 1

Re
∇2u+F(u,�) in �, t>0 (56)

∇ ·u=0 in �, t>0 (57)

��

�t
+u·∇�= 1

Pe
∇2� in �, t>0 (58)

u = (u(t, x, y),v(t, x, y),w(t, x, y))

F(u,�) = (2/Ro)j×u−2We(∇2w∇w+ 1
2∇(∇w)2)+ Gr

Re2
�j

(59)
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Figure 11. Streamlines of the secondary flow in a duct with aspect ratio 8:1 for t : (a) 10 s; (b) 100 s;
(c) 500 s; (d) 1600 s; and (e) fully developed, for Re=260, C=0.057 (G=2×10−4 lb/ft3),

Ro=21.3 (�=0.005rad/s), We=2.1484×10−4,Gr=54331, Pr=8.
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Figure 12. Isotherms for t : (a) 100 s; (b) 500 s; (c) 1600 s; and (d) fully
developed, for Re=260, C=0.057 (G=2×10−4 lb/ft3), Ro=21.3 (�=

0.005rad/s), We=2.1484×10−4, Gr=54331, Pr=8.

which will be employed for studying numerically the problem of mixed convection generated by
the buoyancy force on a rotating weakly viscoelastic fluid.

This model is non-dimensional based on the width of the cross-section of the duct D, the side
walls temperature difference �T =Th−Tc and the velocity scale as the mean longitudinal velocity,
fully developed W0. We can consider also the Rayleigh number Ra=g��D3/�� that relates the
others numbers: Gr/Re=Ra/Pe.

When the above non-dimensional parameters are emphasized in the forcing term, that is, when
we write F=F(Ra,Ro,We), several problems can be discussed:

• For �=0 (Ra=0), we have a decoupled convection problem, generated by the velocity of a
rotating weakly viscoelastic flow.
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Figure 13. Axial velocity profiles: (a) horizontal and (b) vertical, for Re=260,
Ro=21.3, We=2.1484×10−4, Gr=54331, Pr=8 [dashed line (�=0), continuous line

(�=0.005rad/s)]. Q f /Q=0.978, umax/wmax=0.0456.

• If �=0 and the elasticity coefficient �=0 so that Ra=0 and We=0, we have a decoupled
convection problem with a rotating Newtonian fluid.

• If the angular speed �=0 (Ro=∞) and Ra 
=0, we have a natural convection problem.

Thermal properties of a fluid can be described in terms of the Prandtl number that relates
viscosity with heat diffusion.

7.1. Numerical simulations

We now study numerically the problem of mixed convection generated by a buoyancy force
on a rotating weakly viscoelastic fluid. The considered duct has a transversal section with
aspect ratio 8:1, being the width, in a small scale D=0.16ft. Other parameters that remain
constant are the angular velocity �=0.005rad/s, the longitudinal pressure gradient G=2×
10−4 lb/ft3, the viscosity �=1.1×10−5 ft2/s, as well as the specific mass, which changes only
in the buoyancy force. The forcing term (56) actually appears for the Weissenberg number We=
2.1484×10−4 (�=0.5) and due to the heating of a vertical wall of the duct, while the hori-
zontal walls remain adiabatic (Figure 1). Then the Reynolds and Rossby numbers only change
with the effect of the velocity scale, which is chosen as the fully developed mean longitudinal
velocity

W0= 1

A

∫
�

wd�
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Figure 14. Secondary flow in a duct 8:1, for t : (a) 10 s; (b) 500 s; (c) 1600 s; (d) 3500 s;
and (e) fully developed, for Re=251, Ro=21.5 (�=0.005rad/s,G=2×10−4 lb/ft3),

We=2.1484×10−4, Gr=170000, Pr=8.

This scene is typical for the flow of a rotating Newtonian fluid without buoyancy forces [4] and
for the flow of an isothermal rotating weakly viscoelastic fluid, presented in the Figures 5 and 6.
In this situation, the only varying parameter is the Grashof number. The Prandtl number is fixed
in Pr=8, that corresponds to a saturated water state.

The temperature at the exterior wall is initially considered null. The temperature at the interior
wall of the transversal section of the duct is kept at 33◦F. The initial velocity is the same given
in the last section, that is, u(0)=0,v(0)=0,w(0)=w1, where w1 is solution of the equation of
Poisson −∇2=−G/� with non-slip condition at the walls of the duct.

In Figure 10, is exhibited Gr=54330 a transient structure of the normalized velocity of
secondary flows for the Grashof number. The streamlines for the same times are presented in the
Figure 11.

It can be observed that, in the time until t=100s (Figure 12(a)), the rotation effects predominate
and the corresponding isotherms show that the temperature was not established in the domain. As
time evolves, the mixed convection appears once the isotherms in (b), (c) and (d) of the Figure 12
are developing for bigger times. This type of convection influences the flow until the obtention
of a structure flow where the recirculations, in the transversal section of the duct, are leaned in
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Figure 15. Streamlines of the secondary flow in a duct with aspect ratio 8:1 for t : (a) 10 s; (b) 500 s; (c)
1600 s; (d) 3500 s; and (e) fully developed, for Re=251, Ro=21.5 (�=0.005rad/s, G=2×10−4 lb/ft3),

We=2.1484×10−4, Gr=170000, Pr=8.

the lower and upper parts of the duct, giving place to another type of recirculation that encloses
almost all the transversal section. This happens in the interval of time of 1000–1600 s, as can be
seen in the Figures 10(c), (d) and 11(c) and (d). A great difference exists with the structure of a
fully developed isothermal flow considered in the last section and shown in Figure 5.

We also observe that the two vortex structure is broken due to the buoyancy force. In Figure 11,
is shown the streamlines of this flow in the transversal section. It is possible to observe that the
recirculations near the upper wall are stronger that the ones at the lower wall.

In Figure 13, the profiles of the longitudinal velocity of the fully developed flow can be observed
and compared with the velocity profiles without rotation. These profiles show a different effect
than would be expected. The horizontal profile, in the center of the transversal section (Figure 13),
is greater than the velocity profile without mixed convection (Figure 6). However, at the lower and
upper walls, it diminishes in the absence of the convective force, even though the flow rate of this
fluid structure is 97% in comparison to the initial outflow.

When the Grashof number is increased to Gr=170000, the evolution of the secondary flow
shows the onset of certain instabilities of the structure of the previous secondary flow. This can
be observed in Figures 14 and 15 for the streamlines. The appearance of small recirculations can
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Figure 16. Isotherms in a duct 8:1 for t : (a) 500 s; (b) 1600 s; (c) 3500 s; and (d) fully developed, for
Re=251, Ro=21.5, We=2.1484×10−4, Gr=170000, Pr=8.

be appreciated, but almost all are in the same direction. The only recirculation in the opposite
direction is at the lower wall. But this one only appears at the time t=10s; at other times it is
very weak and even disappears at later times, as can be observed in Figure 15.

In Figure 16, the isotherms were obtained for the same times as the ones for which the velocity
fields were calculated. These isotherms are very similar to the ones of natural convection with ducts
of high aspect ratio [8]. We observe that, in this situation, the buoyancy force is the predominant
one and neutralizes the effects of the Coriolis force (Figure 17).

8. CONCLUSIONS

A numeric study has been conducted for the internal flow of a weakly viscoelastic fluid in a
rotating rectangular duct subject to a buoyancy force. The numerical method of finite differences
was employed in primitive variables with a Neumann condition for the pressure on a staggered
grid.
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Figure 17. Axial velocity profiles in a duct 8:1: (a) horizontal (y/D=4) and (b) vertical
(x/D=0.5) [dashed line (�=0), continuous line (�=0.005rad/s)] for Re=251, Ro=21.5,

We=2.1484×10−4,Gr=170000, Pr=8, Qt/Q=0.9391, umax/wmax=0.0847.

Numerical simulations for the cases of a rotating weakly viscoelastic flow with and without
mixed convection have been carried out by using a direct velocity–pressure algorithm which solves
the Poisson equation for the pressure without any iteration. This equation is time-dependent due
to the incorporation of the velocity field through the Neumann condition for the pressure.

Without natural convection, the numerical results for ducts with aspect ratio 2:1 and 8:1 show
that when the Weissenberg number increases (We>7.4×10−5), the configuration of the secondary
flow contains multiple vortexes until a double vortex configuration is achieved, as predicted by
Speziale [4].

For the first case, the numeric results for ducts with aspect ratio 2:1 and 8:1 show that when the
Weissenberg number increases (We>7.4×10−5), the secondary flow is restabilized to a stretched
double vortex configuration, which was predicted by Speziale [4].

The numerical results for the second case, with ducts of aspect ratio 8:1, show that the buoyancy
forces neutralize the effects of the Coriolis force.

Special attention was given to the transient development of the structures of the fields in this
study. The reason for the study is that the literature does not contain much information about these
cases. The numerical scheme developed in this work for a rotating flow can be employed for larger
scales in geophysical problems as well as with porous walls [12, 29–32].
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